
Package: eList (via r-universe)
August 24, 2024

Title List Comprehension and Tools

Version 0.2.0

Author Chris Mann <cmann3@unl.edu>

Maintainer Chris Mann <cmann3@unl.edu>

Description Create list comprehensions (and other types of
comprehension) similar to those in 'python', 'haskell', and
other languages. List comprehension in 'R' converts a regular
for() loop into a vectorized lapply() function. Support for
looping with multiple variables, parallelization, and across
non-standard objects included. Package also contains a variety
of functions to help with list comprehension.

License MIT + file LICENSE

BugReports https://github.com/cmann3/eList/issues

Encoding UTF-8

Suggests knitr, rmarkdown, stats, parallel

VignetteBuilder knitr

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Repository https://cmann3.r-universe.dev

RemoteUrl https://github.com/cmann3/elist

RemoteRef HEAD

RemoteSha c7d1f64680aa6edb1f253aaa1c27b1dd8dae0245

Contents
.. 2
auto_cluster . 3
comprehendSummary . 3
comprehension . 5

1

https://github.com/cmann3/eList/issues

2 ..

flatten . 8
funprog . 9
helpers . 11
helpersFun . 14
ifor . 15
iter . 16
lambda . 17
null.omit . 18

Index 19

.. Create Vector

Description

The .. function allows for the quick creation of vector using either ..(...) or ..[...]. It accepts
vector comprehension arguments using for It can also be used as a more general form of c.

Usage

..(..., clust = NULL, type = Vec, simplify = TRUE)

Arguments

... values to be combined within a vector. Arguments beginning with for are inter-
preted as comprehensions.

clust cluster to use for parallel computations

type comprehension function used when for arguments are present. Defaults to
Vec.

simplify logical; should the result be simplified to an array if possible?

Value

vector

Examples

..[for (i in 1:10) 2*(1:i)]

auto_cluster 3

auto_cluster Quickly Create a Cluster for Parallel Comprehension

Description

A function to quickly create a cluster for use in parallel vector comprehensions. Use makeCluster
from the parallel package for greater control. It defaults to making a PSOCK cluster on Windows
systems and a Fork cluster on unix-based systems. close_cluster is a wrapper to stopCluster.

Usage

auto_cluster(ncore = detectCores() - 1)

close_cluster(clust)

Arguments

ncore number of cores/nodes to use. If not specified, it attempts to detect the number
of cores available and uses all but 1.

clust cluster to close the connection to

Value

an object of class c("SOCKcluster", "cluster")

Functions

• close_cluster: close an open connection to a cluster

Examples

Parallel vector comprehension
cluster <- auto_cluster(2)
Num(for (i in 1:1000) exp(sqrt(i)), clust=cluster)
close_cluster(cluster)

comprehendSummary Vectorized Comprehension and Summary

Description

Functions that summarize the results of a Python-style comprehension. These functions extend
those in comprehension by applying a post-evaluation function to the results of the loop.

4 comprehendSummary

Usage

All(..., clust = NULL, na.rm = FALSE)

Any(..., clust = NULL, na.rm = FALSE)

None(..., clust = NULL, na.rm = FALSE)

Sum(..., clust = NULL, na.rm = FALSE)

Prod(..., clust = NULL, na.rm = FALSE)

Min(..., clust = NULL, na.rm = FALSE)

Max(..., clust = NULL, na.rm = FALSE)

Mean(..., clust = NULL, na.rm = FALSE, trim = 0)

Stats(..., clust = NULL, na.rm = FALSE, trim = 0)

Paste(..., clust = NULL, collapse = "")

Arguments

... vectors of any type or a for loop with format: for (var in seq) <name => <if
(cond)> expr. See comprehension.

clust cluster to use for parallel computations

na.rm logical; should missing values be removed? Defaults to FALSE

trim fraction between 0 and 0.5 describing percent of observations to be trimmed
from each side for the mean

collapse character describing how the results from Paste should be collapsed. See paste.

Value

Single numeric or character value, or a list of results for Stats

Functions

• All: Are all results TRUE?

• Any: Are any results TRUE?

• None: Are all results FALSE?

• Sum: Calculate the sum of results

• Prod: Calculate the prod of results

• Min: Find the minimum in the result

• Max: Find the maximum in the result

• Mean: Calculate the arithmetic mean of the result

comprehension 5

• Stats: Find the 7 number summary (5 number + mean & sd) of the result

• Paste: Collapse the result into a single character

Examples

Calculate the sum of all even numbers to 100
Sum(for (i in seq(2, 100, 2)) i)

Find the mean
Mean(for (i in 1:10) log(i))

Combine character values
greet <- c("Hello", "World", "Nice", "To", "Meet", "You")
val <- Paste(for (i.j in enum(greet)) paste0(i, ": ", j), collapse="\n")
cat(val)

comprehension Vectorized Comprehension in R

Description

Functions that provide Python-style list (and related) comprehension. Comprehensions convert for
loops into lapply functions before evaluation. Support for multiple variables, name assignment,
nested loops, custom iterators, if-else statements, and variety of return types included.

Usage

Comp(map = lapply, fun = NULL)

List(loop, clust = NULL, fun = NULL)

Env(loop, clust = NULL)

Vec(loop, clust = NULL, drop.names = FALSE)

Num(loop, clust = NULL, drop.names = FALSE)

Chr(loop, clust = NULL, drop.names = FALSE)

Logical(loop, clust = NULL, drop.names = FALSE)

Mat(loop, clust = NULL, by.col = TRUE)

DF(loop, clust = NULL)

6 comprehension

Arguments

map function, such as lapply, that is used for the comprehension
fun function to be called on result after comprehension
loop a for loop with format: for (var in seq) <name => <if (cond)> expr. See

"details" below.
clust cluster to use for parallel computations
drop.names logical; should names be dropped after conversion? Defaults to FALSE.
by.col should comprehension on matrix group by columns or rows? Defaults to TRUE.

Details

The comprehension functions parse an R loop expression into lapply functions to allow for more
readable code and easy creation and conversion of vectors. The general syntax for a loop expression
is as follows:

for (var in seq) <name=> <if (cond)> expr

where <...> denotes optional statements. The seq can be any R object: a list, matrix, data.frame,
environment, function, etc. The function iter is called on the seq. So the behavior can be easily
described for custom classes or objects. See helpers for functions like zip that can be used with
seq.

Multiple variables can be used in var by separating the names with a period ".". For example, i.j
is equivalent looping with variables i and j. The downside is that periods cannot be used in the var
name. When multiple variables are used, the object received from the sequence at each iteration is
split and its elements assigned in order to each of the variables. If the var is i.j and the object
received in the iteration was c(2,4,6), then i=2, j=4, and 6 would not be assigned. Since variables
are split on periods, i..j could be used to assign the first and third elements, or .i.j the second
and third. Any number of variables can be used. Note that the entire object is returned if there are
no periods in the name, so use i.. if only the first object is needed.

To provide names within a loop, preface the expression with the desired name for that particular
object followed by =. name can be any expression, just make sure to surround any if chain for the
name with parentheses, or the R parser will not detect that the assignment operator is associated
with the expr. Behind the scenes, the expression on the left-hand side of "=" is wrapped in an
sapply function and the results are assigned to the names of the right-hand side result.

The if statement can contain any number of if-else statements and can be nested. Similarly, for
statements can be nested any number of times and converted to lapply as long as the expression is
a self-contained for loop.

Though comprehensions are functions, both List(for ...) and List[for ...] syntax are sup-
ported. See .. for a convenience wrapper around Vec.

The different comprehensions primarily describe the return value, with List return a "list" and Num
returning a numeric vector. If the object cannot be converted, then an error will be produced. For
Env, the objects must be named. This means that either the name must be assigned within the loop
or the loop is performed across a named object and the name is preserved. Another difference is that
is some comprehensions - though related to atomic vectors - convert for to sapply while others
convert to lapply.

The Comp function is used to create custom comprehensions. It should be supplied with a map
function such as lapply that accepts arguments: X for the argument over which the comprehension

comprehension 7

iterates, FUN a function applied to each element, and ... for additional arguments passed to the FUN.
Comp also accepts a post-evaluation function, fun, that is applied to the result. This could be used
to ensure that the result complies to some class or other restriction.

Users can also specify a cluster to use. If specified, then a parallel version of lapply or sapply
is used based on parLapply and parSapply from the parallel package. This can greatly reduce
the calculation time for different operations, but has additional overhead that makes the cost greater
than the benefit for relatively small vectors. See auto_cluster for auto-creation.

Value

Determined by the function. List returns an object of class ’list’, Num returns a numeric vector, etc.
See the descriptions of each function for their return type.

Functions

• Comp: Create generalized comprehension function

• List: Generate a ’list’ from a for loop

• Env: Generate an ’environment’ from a for loop

• Vec: Generate a flat, atomic ’vector’ from a for loop

• Num: Generate a ’numeric’ vector from a for loop

• Chr: Generate a ’character’ vector from a for loop

• Logical: Generate a ’logical’ vector from a for loop

• Mat: Generate a ’matrix’ from a for loop

• DF: Generate a ’data.frame’ from a for loop

Examples

people <- list(
John = list(age = 30, weight = 180, mood = "happy", gender = "male"),
April = list(age = 26, weight = 110, mood = "sad", gender = "female"),
Jill = list(age = 42, weight = 125, mood = "ok", gender = "female")

)

weight_kg <- Num(for (i in people) i$weight/2.2)
gender <- Chr(for (i in people) i$gender)
gender_tab <- List(for (i in c("male", "female")) i = length(which(gender == i)))

Chr(for (..i.j in people) paste0(i, " & ", j))

Chr(for (i.j in items(people)) paste0(i, " is ", j$age, " years old."))

e <- Env(for (i.j in items(people)) i = j$age)
e$John

Num(for (i in 1:10) for (j in 2:6) if (i == j) i^2)

8 flatten

flatten Flatten a List or Other Object

Description

Reduces the depth of a list or other object. Most non-atomic objects (matrix, data.frame, environ-
ments, etc.) are converted to a "list" in the first level flattening. Atomic vectors, functions, and other
special objects return themselves.

Usage

flatten(x, level = -1, ...)

Arguments

x object of any class, but primarily designed for lists and other "deep" objects

level numeric integer describing the depth at which to flatten the object. If level < 0,
the object will become as flat as possible.

... objects passed to methods

Details

flatten maps itself to each object with the aggregate x, combining the results. Each time it is
mapped, the level is reduced by 1. When level == 0, or an atomic vector or other special object is
reached, flatten returns the object without mapping itself.

Value

flatter object

Examples

x <- list(a = 1, b = 2:5, c = list(list(1,2,3), 4, 5), 6)
flatten(x)
returns: [1 2 3 4 5 1 2 3 4 5 6]

flatten(x, level=1)
returns: [1 2 3 4 5 [1 2 3] 4 5 6]

funprog 9

funprog Higher Order Functions

Description

Common functions used in functional programming. These are similar to their respective counter-
parts in Base R: Map, Reduce, Filter, etc. However, they take any value that can be converted to a
function via lambda and the function comes after the argument in the argument list for convenience
while piping.

Usage

map(
x,
f,
...,
simplify = FALSE,
USE.NAMES = FALSE,
FUN.VALUE = NULL,
clust = NULL

)

mapn(
f,
...,
simplify = FALSE,
USE.NAMES = FALSE,
FUN.VALUE = NULL,
clust = NULL

)

ffind(x, f, ...)

filter(x, f, ...)

reduce(x, f, init = NULL, right = FALSE)

accumulate(x, f, init, right = FALSE)

compose(...)

Arguments

x vector

f function to be applied to x

... additional arguments supplied to f, or a list of functions for compose (applied in
the order provided)

10 funprog

simplify logical; should the results be simplified to an array?
USE.NAMES logical; should x be used as names for the result?
FUN.VALUE template vector for the return type
clust cluster to use for parallel computations. See comprehension for more details.

FUN.VALUE is ignored if a cluster is supplied.
init object used to initialize reduce, if an object other then the first value is desired
right logical; should the reduction start from left (default) or right?

Details

map is slightly different from Map in Base R other than the argument order. First, iter is applied to
the vector x so that users can define behavior for custom classes. Second, lambda is applied to f.
map only works for a single vector. Use mapn to use multiple vectors as the function argument. The
map functions are wrappers around sapply or link[base]{vapply} (if FUN.VALUE is provided).

The other functions behave similar to what one would expect, with the exception of accumulate.
accumulate does not produce all intermediate results; it only provides the final cumulative vector.

compose takes multiple functions and produces a single "composed" function. When the composed
function is called, each function in the list is applied sequentially to the arguments. The functions
can be retrieved from the composed function’s attributes.

Value

determined by the return value of the function f.

Functions

• map: Apply function f using elements in vector x at each index.
• mapn: Apply function f using the element in all elements in vectors ... at each index as

arguments.
• ffind: Find the position of elements in vector x that satisfy predicate function f.
• filter: Extract elements in vector x that satisfy predicate function f.
• reduce: Combine elements in a vector x using binary function f.
• accumulate: Combine elements in a vector x using binary function f, accumulating the re-

sults.
• compose: Combine functions into a single function.

Examples

x <- list(1:3, 4:6, 7:9)
map(x, ~Reduce(`-`, .i))
map(x, sqrt)

filter(x[[1]], ~.i < 3)

reduce(x[[3]], `*`, init=1)

f <- compose(sqrt, log, `*`(2))
f(10)

helpers 11

helpers Helpers for Vector Comprehension

Description

These functions help to create sequences for use in vector comprehension.

Usage

items(x)

vals(x)

enum(x)

rows(x, ...)

cols(x, ...)

zip(..., fill = NA, longest = TRUE)

lrep(x, n = 2, axis = 0)

transpose(x, fill = NA, longest = TRUE)

slice(x, start, end, by = 1L)

roll(x, n = 2, fill = NULL, head = TRUE, ...)

unroll(x)

lagg(x, k = 1, fill = NA, axis = 0)

groups(x, g)

chars(x)

chain(x)

separate(x, n = 2, fill = NA)

first(x)

rest(x)

splitn(x, n = 1)

12 helpers

Arguments

x list, environment, or other vector
... vectors to combine
fill object with which to fill the vector when operating on elements with varying

lengths or shifts.
longest logical; should the longest item be used to determine the new length or shortest?

Defaults to TRUE.
n size of window for roll and separate, or position of item in which to split

each element in splitn

axis which axis to perform different operations? axis=0, the default, performs oper-
ations on each element in the list (columns), while axis=1 performs operations
on each object within the elements of a list (rows).

start, end, by integers of length 1 describing the sequence for slicing the vector. If missing,
they will default to the start or end of the vector.

head logical; should fill be at the head of the vector or the tail?
k number of elements to shift right. Negative values of k shift to the left
g vector of objects used to define groups

Details

These functions transform vectors or other objects into lists, by adding elements, grouping ob-
jects, extracting certain elements, and so forth. These can be used in conjunction with vector
comprehension to develop quick and readable code.
An example of how each of these can be used is seen here. Let x and y be given as follows.
x = list(a = 2, b = 4, c = 8) y = list(1:2, 2:3, 3:4)

Then the various helper functions will have the following effect.

• chain(y) => [1, 2, 2, 3, 3, 4]

• chars("hello") => ['h', 'e', 'l', 'l', 'o']

• enum(x) => [[1, 2], [2, 4], [3, 8]]

• first(y) => [1, 2, 3]

• groups(x, c("z", "w", "z")) => [["z", [2, 8]], ["w", [4]]]

• items(x) => [["a", 2], ["b", 4], ["c", 8]]

• lagg(x, 2) => [[2, 4, 8], [NA, 2, 4], [NA, NA, 2]]

• lrep(x, 3) => [[2, 4, 8], [2, 4, 8], [2, 4, 8]]

• rest(y) => [[2], [3], [4]]

• roll(x, 2) => [[2, 4] [4, 8]]

• separate(x, 2) => [[2, 4], [8, NA]]

• slice(x,1,,2) => [2, 8]

• splitn(y) => [[[1], [2]], [[2], [3]], [[3], [4]]]

• transpose(y) => [[1, 2, 3], [2, 3, 4]]

• unroll(y) => [1, 2, 3, 4]

• vals(x) => [2, 4, 8]

• zip(x, 1:3) => [[2, 1], [4, 2], [8, 3]]

helpers 13

Value

list or other vector

Functions

• items: Create a list containing the name of each element of x and its value.

• vals: Extract the values of x without their names.

• enum: Create a list containing the index of each element of x and its value.

• rows: Create a list containing the rows of a data.frame or matrix

• cols: Create a list containing the columns of a data.frame or matrix

• zip: Merge two or more vectors into a list with each index containing values from each vector
at that index.

• lrep: Repeat x, n times, with each repetition being an item in a list.

• transpose: Transpose a list or other object into a list. Opposite of zip.

• slice: Subset an object by a sequence: start, end, by. If start is missing, it is assumed to
be 1. If end is missing, it is assumed to be the length of the object.

• roll: Create a list of objects containing n items from x, with n-1 elements overlapping in a
chain. Opposite of unroll.

• unroll: Flatten a list by combining the unique elements between each group of two elements.
Opposite of roll.

• lagg: Create a list containing an object and each the first k lags of an object.

• groups: Create a list where each element is a list with the first element equal to a unique value
in g and the other element is a list containing all values of x at the same indices as the value
of g.

• chars: Convert a character string into a vector of single character values.

• chain: Combine each object in a list. Opposite of separate.

• separate: Separate vector into a list of objects with length n. Opposite of chain.

• first: Take the first element of each item in a list.

• rest: Remove the first element of each item in a list.

• splitn: Split each element in a list into two parts: one with the first n elements and the second
with the rest.

Examples

x <- 1:10
y <- 32:35

n <- Num(for (i.j in zip(x,y)) i+j)
Note that the result is different from x+y since the shortest does not repeat
mean(n[1:4])

e <- new.env()
e$a <- 1:5
e$b <- 6:10

14 helpersFun

e2 <- Env(for (key.val in items(e)) key = sqrt(val))
e2$a

row product
mat <- matrix(1:9, nrow=3)
Num(for (i in rows(mat)) prod(i))

helpersFun Higher Order Helpers for Vector Comprehension

Description

These functions use a vector and a function to create an iterable object that can be used for vector
comprehension.

Usage

starmap(x, f, axis = 0, ..., longest = TRUE, fill = NULL)

starred(x, f, axis = 0, ..., longest = TRUE, fill = NULL)

starfilter(x, f, axis = 0, ..., longest = TRUE, fill = NULL)

partition(x, f, ...)

dropwhile(x, f, ...)

takewhile(x, f, ...)

Arguments

x vector

f function to be applied to x

axis which axis to perform different operations? axis=0, the default, performs oper-
ations on each element in the list (columns), while axis=1 performs operations
on each object within the elements of a list (rows).

... additional arguments passed to lower functions. See funprog

longest logical; should the longest item be used to determine the new length or shortest?
Defaults to TRUE.

fill object with which to fill the vector when operating on elements with varying
lengths or shifts.

Details

The star functions are similar to their funprog counterparts, except that they are applied one level
deeper in the list.

ifor 15

Value

list or other vector

Functions

• starmap: Use map f on each element of x.

• starred: Use reduce f on each element of x.

• starfilter: Use filter f on each element of x.

• partition: Map predicate function f to each object in x and split based on which items
evaluate to TRUE (index 1) vs. FALSE (index 2).

• dropwhile: Drop objects from x until predicate function f evaluates to FALSE.

• takewhile: Keep objects from x until predicate function f evaluates to FALSE.

Examples

x <- list(1:3, 4:6, 7:9)

filter away values less than 6
starfilter(x, ~.i > 5)
starfilter(x, ~.i > 5, axis=1) # Transposed

starred(x, `/`, init=1) # sequentially divide each item, starting at 1

partition(x, ~.i > 5)

ifor ’for’ Loop with Additional Features

Description

ifor evaluates an expression within a for loop, after applying iter to the sequence. ifor also
allows multiple indexes by separating each variable name with a ".", such that ifor(x, i.j, ...)
is similar to for (i,j in x) ... if for loops accepted multiple index values. See comprehension
for more details. Assignment to a variable outside of the function can be accomplished through
assign or <<-.

Usage

ifor(ind, x, expr)

Arguments

ind variable name whose values are updated each round in the loop. Separate names
with "." to allow for multiple variables

x sequence over which to loop

expr expression that is evaluated each round within the loop

16 iter

Value

NULL invisibly

Examples

ifor(i.j, zip(1:4, 0:3),{
print(i+j)

})

iter Create an Iterable Object

Description

Vector comprehension iterates over an object, but the default behavior may not be desirable for
custom classes. iter allows the user to specify how the object behaves within a comprehension,
or other loop in the eList package. Unless a method is specified for an object, iter will attempt to
convert it to a list except for atomic vectors.

Usage

iter(x)

Arguments

x object to be looped across

Value

a vector

Examples

e <- new.env()
e$x <- 10
e$y <- letters[1:10]
iter(e)

lambda 17

lambda Create Functions from Formulas/Objects

Description

lambda allows the quick creation of anonymous functions from a variety of different object types,
such as formulas or from other calls.

Usage

lambda(x, ...)

Arguments

x object to be converted to a function

... arguments passed to methods

Details

The behavior of lambda depends on the object that is passed to it. The method for handling func-
tions returns the function unchanged. The method for handling symbols evaluates the symbol, then
attempts to apply itself to the result. For calls, lambda creates a function that applies the new
arguments, along with the original arguments in the call, to the original call function.

lambda attempts to parse a formula object - an object with syntax LHS ~ RHS - by using the value
on the left-hand side as the function arguments and the value on the right-hand side as the function
body. The argument on the left-hand side is split across "." so that multiple arguments can be easily
created. For example, lambda(x.y ~ sqrt(x + y)) creates function(x, y) sqrt(x + y). If the
formula is only one-sided, then the formula is parsed similar to the method in the purrr package;
names that are prefixed by a "." are considered the function arguments. The previous function could
also be created using lambda(~sqrt(.x + .y)).

lambda is used in many of the higher-order functions in the eList package. It can also be used in
other functions so that users have a variety of options in which they satisfy functional arguments.

Value

function

Examples

double2 <- lambda(x.y ~ 2*(x + y))
double2(5, 6)

alternatively, using 'dot' notation:
double2 <- lambda(~ 2*(.x + .y))

using a call with partial arguments
subcall <- substitute(round(digits=2))

18 null.omit

round2 <- lambda(subcall)
round2(0.04393282)

null.omit Remove ’NULL’ Entries from List

Description

Function removes all items that are NULL or empty from a list or other object.

Usage

null.omit(x)

Arguments

x object to be checked

Value

x without NULL entries

Examples

l <- list(a=2, b=NULL, c = 3)
length(l) == 3

k <- null.omit(l)
length(k) == 2

Index

.., 2, 6

accumulate (funprog), 9
All (comprehendSummary), 3
Any (comprehendSummary), 3
auto_cluster, 3, 7

c, 2
chain (helpers), 11
chars (helpers), 11
Chr (comprehension), 5
close_cluster (auto_cluster), 3
cols (helpers), 11
Comp (comprehension), 5
compose (funprog), 9
comprehendSummary, 3
comprehension, 2–4, 5, 10–12, 15, 16

DF (comprehension), 5
dropwhile (helpersFun), 14

enum (helpers), 11
Env (comprehension), 5

ffind (funprog), 9
Filter, 9
filter (funprog), 9
first (helpers), 11
flatten, 8
for, 5
funprog, 9, 14

groups (helpers), 11

helpers, 6, 11
helpersFun, 14

ifor, 15
items (helpers), 11
iter, 6, 10, 15, 16

lagg (helpers), 11

lambda, 9, 10, 17
lapply, 5, 6
List (comprehension), 5
Logical (comprehension), 5
lrep (helpers), 11

makeCluster, 3
Map, 9, 10
map (funprog), 9
mapn (funprog), 9
Mat (comprehension), 5
Max (comprehendSummary), 3
Mean (comprehendSummary), 3
Min (comprehendSummary), 3

names, 6
None (comprehendSummary), 3
null.omit, 18
Num (comprehension), 5

parallel, 2, 4, 6, 7, 10
partition (helpersFun), 14
Paste (comprehendSummary), 3
paste, 4
Prod (comprehendSummary), 3
prod, 4

Reduce, 9
reduce (funprog), 9
rest (helpers), 11
roll (helpers), 11
rows (helpers), 11

sapply, 10
separate (helpers), 11
slice (helpers), 11
splitn (helpers), 11
starfilter (helpersFun), 14
starmap (helpersFun), 14
starred (helpersFun), 14
Stats (comprehendSummary), 3

19

20 INDEX

stopCluster, 3
Sum (comprehendSummary), 3
sum, 4

takewhile (helpersFun), 14
transpose (helpers), 11

unroll (helpers), 11

vals (helpers), 11
Vec (comprehension), 5

zip, 6
zip (helpers), 11

	..
	auto_cluster
	comprehendSummary
	comprehension
	flatten
	funprog
	helpers
	helpersFun
	ifor
	iter
	lambda
	null.omit
	Index

